Innovative Process Model of Ti-6al-4v Additive Layer Manufacturing Using Cold Metal Transfer (cmt)
نویسندگان
چکیده
New approaches to modern manufacture have emerged from Additive Layer Manufacturing (ALM) technologies over the last 25 years. These approaches provide form, fit and function to a wide range of metallic alloys and components. Wire + Arc Additive Layer Manufacture (WAALM) has gained the interest of the research community in recent years due to its high deposition rate and efficiency (100%). The technique has been presented to the aerospace manufacturing industry as a unique low cost solution for large structural components manufacture. With this process product development time, capital investment and “Buy-toFly” ratios can be significantly improved. One of the greatest challenges of WAALM systems is the control algorithms needed to predict optimum welding parameters in order to achieve a specific target wall width/height requirement, and maximum deposition efficiency. This paper describes a process model for multilayer Ti-6Al-4V deposition using the Gas Metal Arc Welding based process of Cold Metal Transfer. The process model is based on a Systematic Experimental Approach carried out using a regression analysis. The mathematical relationships obtained are ready to use in future large scale “intelligent” WAALM controllers.
منابع مشابه
PROCESS CONTROL AND DEFECTS IN Ti-6Al-4V ADDITIVE MANUFACTURING, USING PLASMA TRANSFERRED ARC (PTA) TECHNIQUES
Defects during Plasma Transfer Arc (PTA) beam fusion additive manufacturing (AM) processing of Ti-6Al-4V, including lack of fusion, porosity variations, and solidification cracking, have been monitored using near infrared (1.62 μm) imagery at 300 Hz, 300 μm spatial resolution and melt pool sizes of greater than 12μ. The temperature evolution exhibits a periodic temperature modulation of more th...
متن کاملResidual Stress in Metal Parts Produced by Powder-Bed Additive Manufacturing Processes
In this study, residual stresses from the electron beam additive manufacturing (EBAM) and selective laser melting (SLM) processes, due to repeated thermal cycles, were investigated. Residual stresses play a crucial role in part performance, and thus, it is critical to evaluate the process-induced residual stresses in AM parts. Ti-6Al-4V and Inconel 718 parts produced by EBAM and SLM, respective...
متن کاملMICROSTRUCTURE, HARDNESS AND SURFACE ROUGHNESS CHARACTERIZATION OF EBM FABRICATED Ti-6Al-4V SAMPLES
Electron beam melting (EBM) is among the modern additive manufacturing processes whereby metal powders are selectively melted to produce very complicated components with superior mechanical properties. In this study, microstructure, hardness, and surface roughness of EBM fabricated Ti6Al4V samples were characterized. The results showed that the microstructure consisted of epitaxially-grown prim...
متن کاملCorrigendum to “Experimental Study of Direct Laser Deposition of Ti-6Al-4V and Inconel 718 by Using Pulsed Parameters”
Laser direct metal deposition (LDMD) has developed from a prototyping to a single metal manufacturing tool. Its potential for creating multimaterial and functionally graded structures is now beginning to be explored. This work is a first part of a study in which a single layer of Inconel 718 is deposited on Ti-6Al-4V substrate. Single layer tracks were built at a range of powder mass flow rates...
متن کاملMicrostructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications.
The microstructure and mechanical behavior of simple product geometries produced by layered manufacturing using the electron beam melting (EBM) process and the selective laser melting (SLM) process are compared with those characteristic of conventional wrought and cast products of Ti-6Al-4V. Microstructures are characterized utilizing optical metallography (OM), scanning electron microscopy (SE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010